

CONFERENCE ABOUT THE STATUS AND FUTURE OF THE EDUCATIONAL AND R&D SERVICES FOR THE VEHICLE INDUSTRY

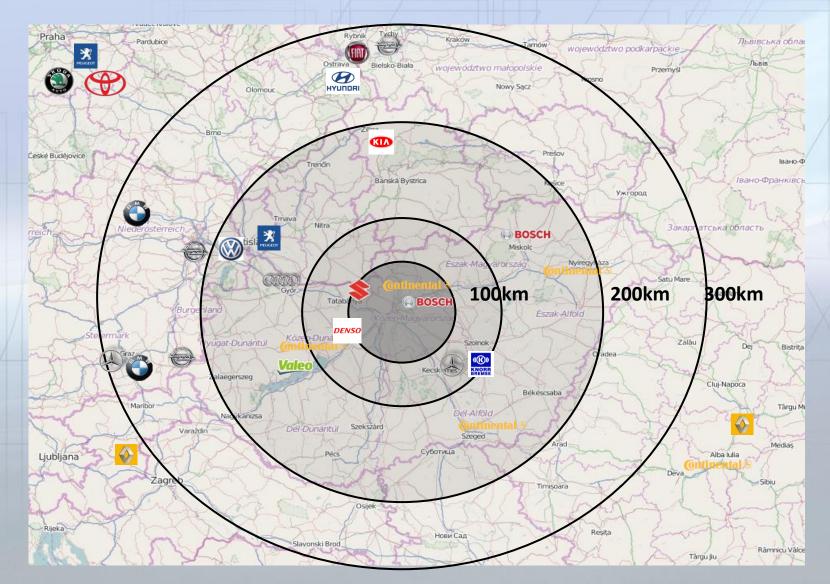
AUTOMOTIVE INDUSTRY RELATED RESEARCH IN UNIVERSITY ENVIRONMENT JÁRMŰIPARI KUTATÁSOK EGYETEMI KÖRNYEZETBEN

Dr. Dénes Fodor and Dr. László Czúni – University of Pannonia, Veszprém

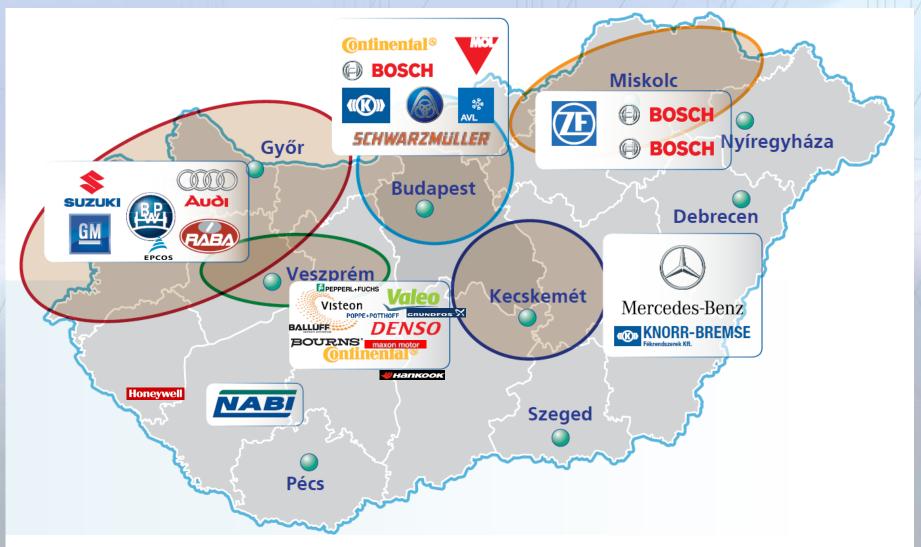
Cooperation between higher education, research institutes and automotive industry

section

Hungarian Academy of Science Budapest, 31 January 2014


Contents

- Short automotive overview
- A global glimps on R&D in the automotive field
- Life cycle of R&D
- Research & Development at the University of Pannonia
- Some Case Studies
- Known problems and ways to solve
- Conclusions


Middle-East European Automotive Situation

Concentration of Automotive OEM and TIER1 Industry in Hungary

What Manufacturing Means?

- "[Manufacturing in the US is] the vanguard of innovation ...
 - 9 percent of jobs,
 - 11 percent of GDP,
 - 35 percent of engineers,
 - 69 percent of private R&D, and
 - 90 percent of our patents."

Bruce Katz (a vice president at the Brookings Institution), US Manufacturing: The Misunderstood Economic Powerhouse, Industry Week, January 15, 2013.

WORLDWIDE AUTOMOTIVE INDUSTRY

1200 USD for R&D per vehicle

16 % of total R&D for all industries

7 billion USD increase on R&D from 2012 to 2013

R&D expenditures of research sites at enterprises in Hungary (KSH 2012)

- All R&D expenditures
 - 239 B Ft
- Processing industry
 - 131 B Ft (55%)
- Vehicle production
 - 18 B Ft (8%)
- Machine production
 - 14 B Ft (6%)

Számjel	Gazdasági ág, ágazat	K+F-	(millió forint) Ebböl:	
		K+F- ráfordítás	K+F-költség	K+F-beruházás
	Mindösszesen Ebből:	238 671,0	202 728,9	35 942,1
Α	Mezőgazdaság, erdőgazdálkodás, halászat	4 254,8	3 320,1	934,7
С	Feldolgozóipar	131 099,0	107 315,3	23 783,7
CA	Ebböl: Élelmiszer, ital, dohánytermék gyártása	3 453,3	2 472,7	980,6
CE-CF	Vegyi anyag, termék gyártása és gyógyszergyártás	55 531,1	47 538,0	7 993,1
CG	Gumi-, műanyag és nemesfém ásványi termék gyártása	4 380,4	2 658,7	1 721,7
CH	Fémalapanyag és fémfeldolgozási termék gyártása	6 221,1	2 560,9	3 660,2
CI	Számítógép, elektronikai, optikai termék gyártása	14 398,3	12 763,3	1 635,0
СК	Gép, gépi berendezés gyártása	14 122,1	11 420,2	2 701,9
CL	Járműgyártás	18 297,0	16 143,2	2 153,8
CM	Egyéb feldolgozóipar; ipari gép, berendezés üzembe helyezése, javitása	5 992,6	5 085,1	907,5
D-E	Villamosenergia-, gáz-, gőzellátás, légkondícionálás, valamint vízellátás; szennyvíz gyűjtése, kezelése, hulladékgazdálkodás, szennyczödésmentesítés	442,5	370,0	72,5
F	Épitöipar	1 065,5	844,4	221,1
G	Kereskedelem, gépjárműjavítás	28 054,2	24 710,3	3 343,9
J	Információ, kommunikáció	20 739,2	18 854,1	1 885,1
М	Szakmai, tudományos, műszaki tevékenység	49 686,4	44 620,1	5 066,3
MB	Ebből: Tudományos kutatás-fejlesztés	40 029,4	36 651,2	3 378,2
	7211 Biotechnológiai kutatás-fejlesztés	7 888,4	6 908,1	980,3
	7219 Egyéb természettudományi, műszaki kutatás-fejlesztés	31 096,8	28 716,3	2 380,5
	7220 Társadalomtudományi, humán kutatás-fejlesztés	1 044,2	1 026,8	17,4
Р	Oktatás	18,4	12,1	6,3
Q	Humán-egészségűgyi, szociális ellátás	651,8	280,6	371,2
s	Egyéb szolgáltatás	587,5	516,1	71,4

63. A vállalkozási kutató-feilesztő helvek K+F-ráfordításai gazdasági ágak szerint. 2012

Cycle of Research and Development

Implement, Study and Improve

Enterprises

Design, Develop and Test Synthesize and Make Theories

Universities

Explore, Hypothesize and Clarify

What makes the cycle sustainable?

Main Areas of R&D in the Automotive Industry

Vehicle Development

- Safety systems (crashworthiness, restraints, active/passive safety devices)
- Customer interface

Energy and Environment

- Combustion
- Electrochemical
- Recycling

Systems and Electronics

- Sensors
- Vehicle controls
- Telematics/vehicle communication

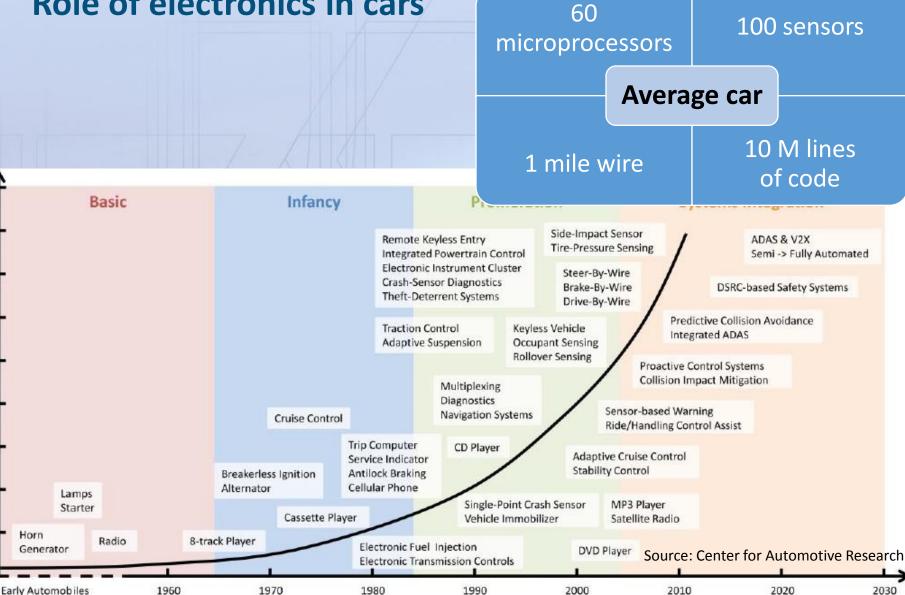
Materials

- Advanced lightweight materials
- Biomaterials

Manufacturing Systems

- Manufacturing processes
- Robotics
- Computer-Aided Engineering
- Nanotechnology

Becoming more interdisciplinary...


Horn

Generator

Electrical/Electronic Content of Vehicles (%)

Role of electronics in cars

FACULTY OF INFORMATION TECHNOLOGY

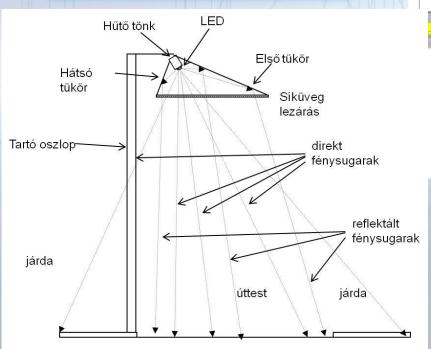
Dr. László Czúni

University of Pannonia

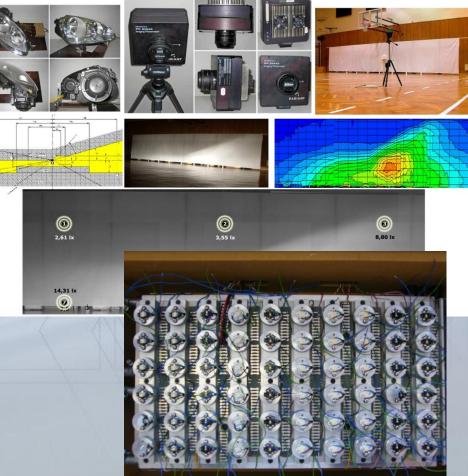
4 Departments 2 PhD Schools 4 BSc, 2 MSc courses 1 Postgraduate course

14 Research Laboratories

7 R&D Centers



Let there be light ... and Vision


Virtual Environments and Imaging Technologies Research Laboratory

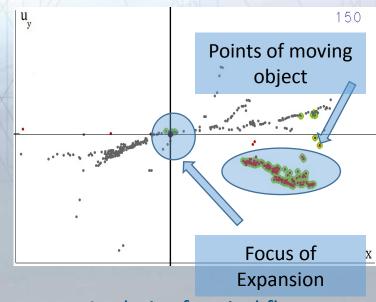
- Light production
- Sensing Perception
- Measurement

Development of LED lamps

Car projector measurements

Artificial aging of LEDs

Sensing and Processing...


Sensor Networks Research Laboratory

- Noise source localization
- Vehicle classification
- Event detection with various sensors (accelerometers,
 - gyros, microphones, PIRs, magnetometers, etc.)
- Optimal network communication protocols

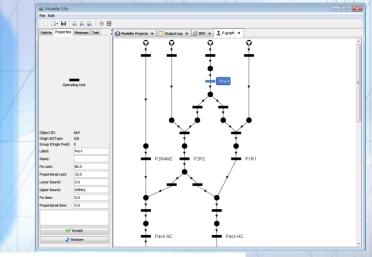
Independent motion detection

Feature point selection

Analysis of optical flow

Image Processing Research Laboratory

- Motion detection
- Object recognition
- Data mining in image databases
- Video analysis



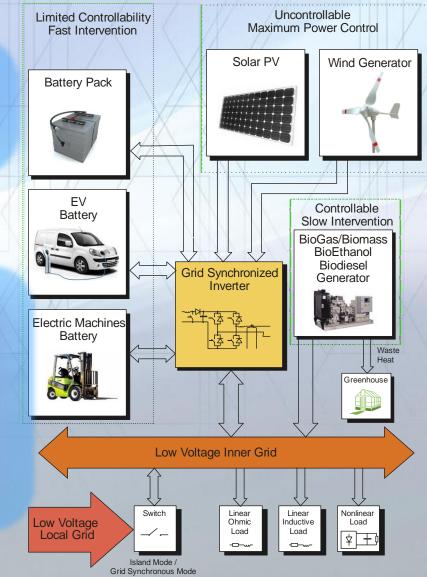
Optimization for production and logistics

Advanced Process Optimization Research Laboratory

 Strong mathematical background (process synthesis, graph theories)
 Decision support systems for supply chains
 Scheduling Suppliers (e.g. for power plants)
 Supply chain simulations
 Optimal production planning

Manufacturers
Distribution

Consumers

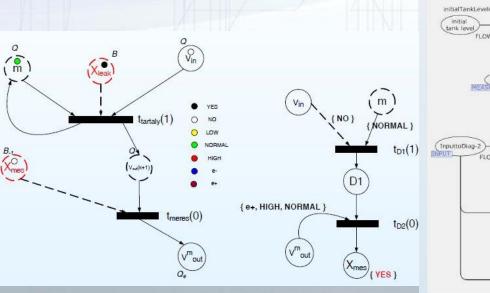

Optimal Energy Systems – Energy Systems Integration

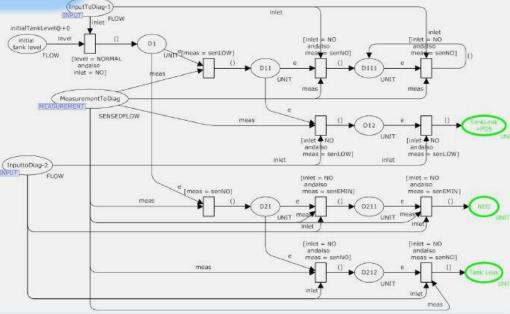
Intelligent Control Systems Research Laboratory

- Energy systems integration
- Energy systems control
- LiFePO₄ battery modeling

Process Integration and Intensification Research Laboratory

- Life cycle analysis of energy systems
- CO₂ emissions reduction and mitigation exploiting IT tools
- Integration of Renewable sources of Energy into Energy Supply Chains


Discrete Diagnostics for the Industry


Intelligent Control Systems Research Laboratory

- Fault Mode and Effect Analysis (FMEA)
- Hazard and Operability Analysis (HAZOP)
- Process mining

New fine scale measurement methods

Coloured Petri Nets Models

Process mining to diagnose

FACULTY OF ENGINEERING

Dr. Dénes Fodor

University of Pannonia

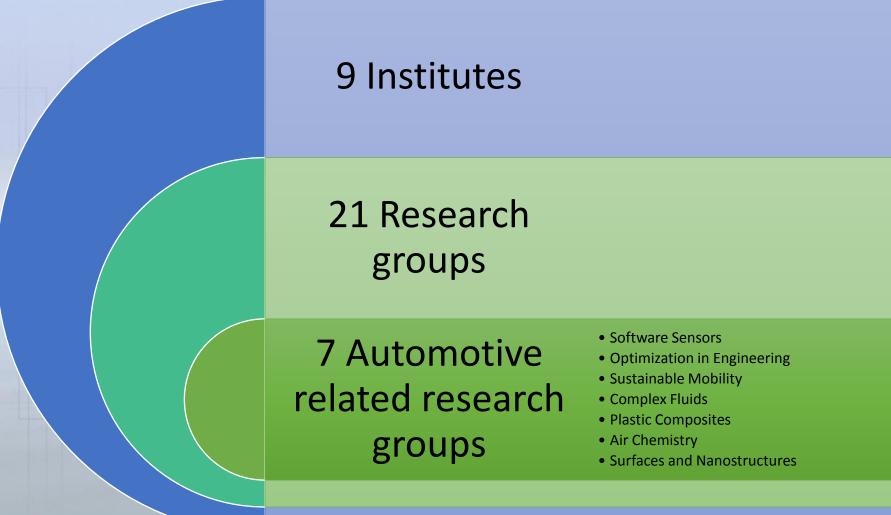
Faculty of Engineering – Education

8 BSc courses

- Materials engineering
- Bioengineering
- Mechanical engineering
- Environmental eng.
- Mechatronics
- Chemical engineering
- Chemistry
- Environmental science

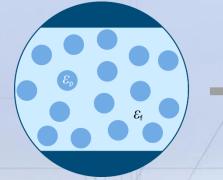
6 MSc courses

- Materials engineering
- Environmental eng.
- Mechatronics
- Chemical engineering
- Chemistry
- Environmental science

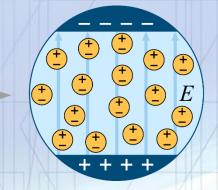

2 PhD Schools

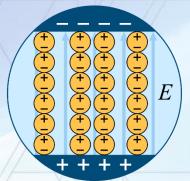
- Chemical Engineering and Material Sciences
- Chemistry and Environmental Sciences

Faculty of Engineering – Research groups


MAGNETORHEOLOGICAL AND ELECTRORHEOLOGICAL FLUIDS

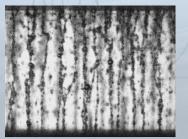
Complex Liquids Research Group Head of Research Group: **Dr. István Szalai** Institute of Physics and Mechatronics




Electro- (ER) and magnetorheological (MR) effect

liquid + solid particles

induced dipoles



structure formation (chains, columns)

magnetic analogue: MR fluid (µm sized particles) ferrofluid (nm sized particles)

Ε


change in properties: rheological (viscosity), dielectric, optical, ...

ER fluid

MR fluid

ferrofluid

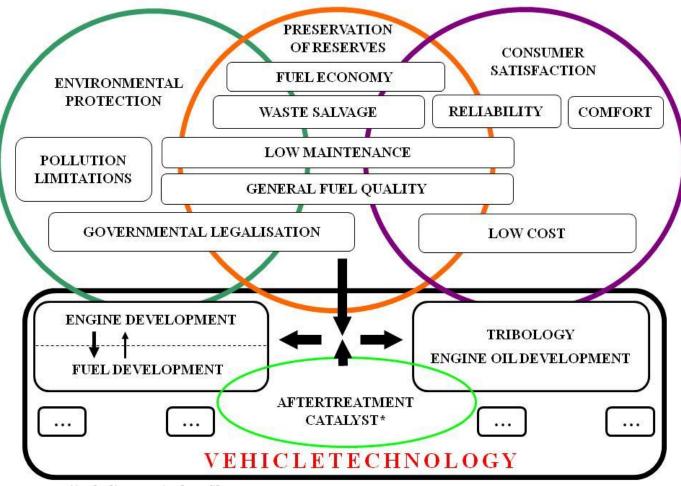
smart materials: various properties can be controlled with external fields

MR or ER based applications

- Dampers (ER, MR)
 - bridges: China, Croatia, Netherlands
 - (Maurer Söhne GmbH)
 - buildings (seismic application, wind)
- Suspensions (MR)
 - shock absorber:
 - commercial: MagneRide
 - Audi, BMW, Ferrari, Cadillac, Chevrolet
 - military: Humvee (LORD corporation)
 - engine mount (Porsche)
 - seat suspensions (trucks)

MR or ER based applications

- Clutches (MR)
 - trucks, SUVs (General Motors)
 - hybrid vehicle for public transportation: AutoTram (Fraunhofer IVI)
- Brakes (ER, MR)
 - human prosthetic limb: Rheo Knee (Össur)
 - aerobic machines
- Ferrofluid applications
 - Liquid seals (hard disks)
 - Heat transfer
 - Magnetic hypertermia (cancer treatment)
 - MRI contrast agent


FUELS AND LUBRICANTS

Sustainable Mobility Research Group Head of research Group: **Dr. Jenő Hancsók** Department of MOL Hydrocarbon and Coal Processing

Development of fuels, lubricants & system elements

*includingparticulate filter

Hancsók, J., Kasza, T.: "The Importance of Isoparaffins at the Modern Engine Fuel Production", 8th International Colloquium Fuels 2011, Németország, Stuttgart/Ostfildern, 2011. január 19-20.,

Quality improving of fuels and lubricants

- Hydrocarbon products with high hydrogen content
 - (methane from alternative sources, gasolines or diesel fuels rich in isoparaffins from crude oil and different wastes)
 - Wide raw material range, economic production
 - Very high octane or cetane number
 - Clean burning \rightarrow environment friendly
 - Operating experience, known safety aspects
- Fuel/energy saving engine oils and gear oils
 - High isoparaffin content base oils (80-85% of engine oils)
 - Based on crude oil, including isomerization
 - Based on biosynthetic gas (isomerization hydrocracking of heavy Fischer-Tropsch bioparaffins)
 - Performance additive packages with high efficieny
 - (→ longer oil drain interval, environment friendly, friction and wear reducing)
- Partners:

MOL Plc. – MOL-LUB Ltd. – Hungrana Ltd. – Rossi Biofuel Ltd.

Own results for the future

Selected properties of biogasoils from waste tryglicerides and bio synthetic gas (bioparaffins)

	Bioparaffins		EN 14214:2012	EN 590:2012	CEN CWA 15940:2009
Property	Biogasoil	Synthetic biogasoil*	<pre>biodiesel (winter grade)</pre>	Diesel gasoil (winter grade)	Paraffinic diesel from synthesis or hydrotreatment
Density, kg/m ³	775-785	770-785	860-900	820-845	770-800
Cetane number	75-90	66-81	appr. 51	min. 51	min. 70
Cold Filter Plugging Point (CFPP), °C	appr. (-15)- (-35)	appr. 0 – (-35)	< -5	< -20	< -20
Heating value, MJ/kg	appr. 44	appr. 43	appr. 38	appr. 43	n.a.
Heating value, MJ/dm ³	appr. 34	appr. 34	appr. 34	appr. 36	n.a.
Polycyclic aromatic content, %	0	0	0	max. 8	max. 0.1
Sulphur content, mg/kg	<1	< 10	< 10	< 10	< 5

Hancsók J., Eller Z., Pölczmann Gy., Varga Z.: "Sustainable Production of Bioparaffins", Chemical Engineering Transactions, 2013, 35(2), 1027-1032.

AUTOMOTIVE RESEARCH

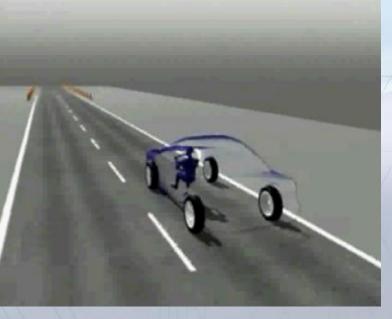
Software Sensors Research Group Head of Research Group: **Dr. Dénes Fodor** Institute of Mechanical Engineering

Continental-University Cooperation

- Automotive system engineering education (MSc level) beginning from 2010 September with the strong support from Continental Automotive Systems (for BSc graduates in mechanical, electrical, technical informatics and mechatronic engineering).
- Establishment of a new department called "Automotive Mechatronic Systems" inside the Mechanical Engineering Institute to support the education and research activity of the Continental AES school

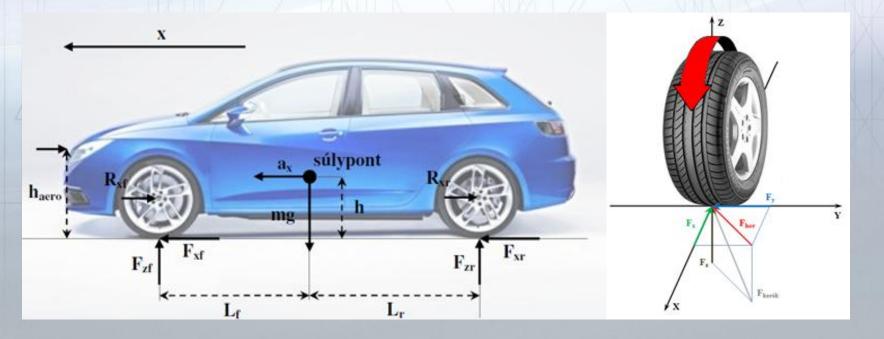
Research and development projects:

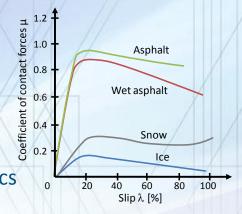
- Vehicle-Dynamics-Based Tire-Road Friction Coefficient Estimation
- Development of a Bike ABS Prototype
- Sensorless Rotor Position Detection of PMSM
- Deflation Detection System (DDS)
- Side Slip Angle Estimation
- Conti-Uni Verification Project (HIL testing of ECUs)
- Till 2013 second semester 23 graduates from which 14 are today Continental employee



Continental-University Projects

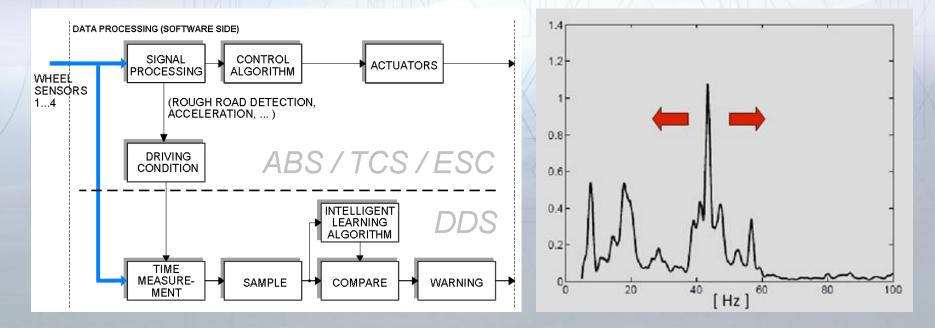
Active Safety Systems



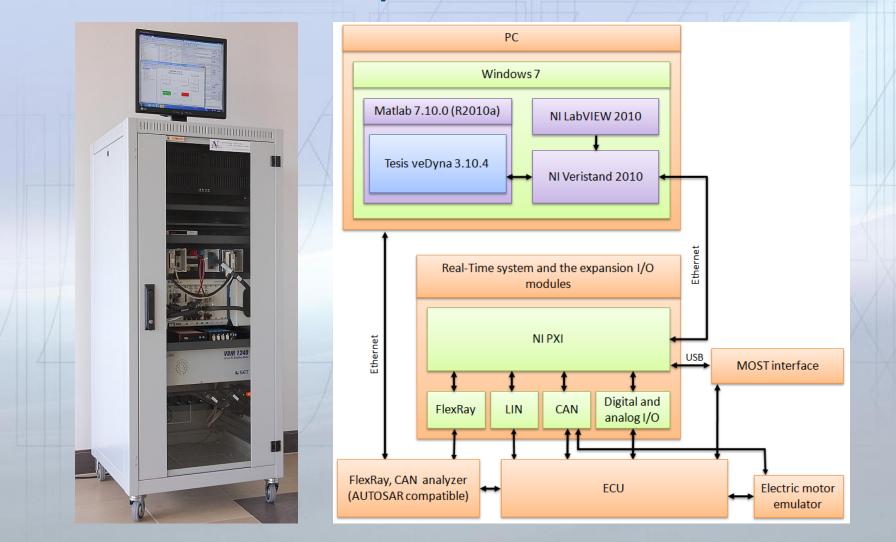


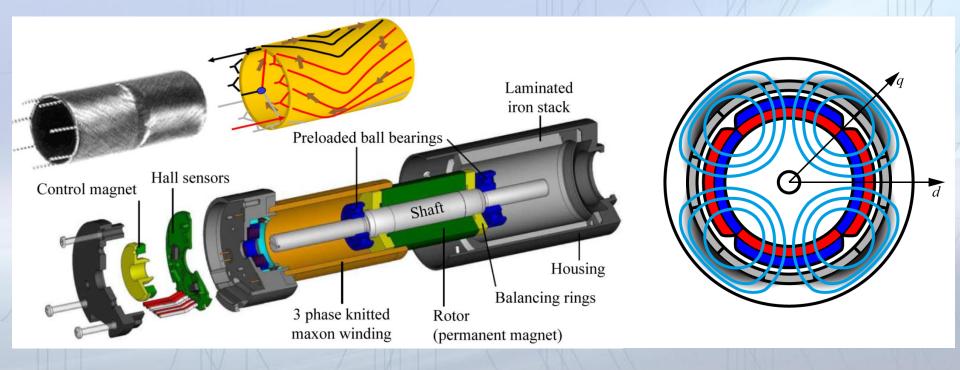
Tire-Road Friction Coefficient Estimation

- Improve active safety systems
 - Anti-lock Braking System
 - Electronic Stability Program
 - Traction Control System
- Real-time estimation algorithms
 - Slip-slope method based on longitudinal vehicle dynamics
 - Cornering stiffness method based on lateral vehicle dynamics
 - Burckhardt method based on wheel dynamics



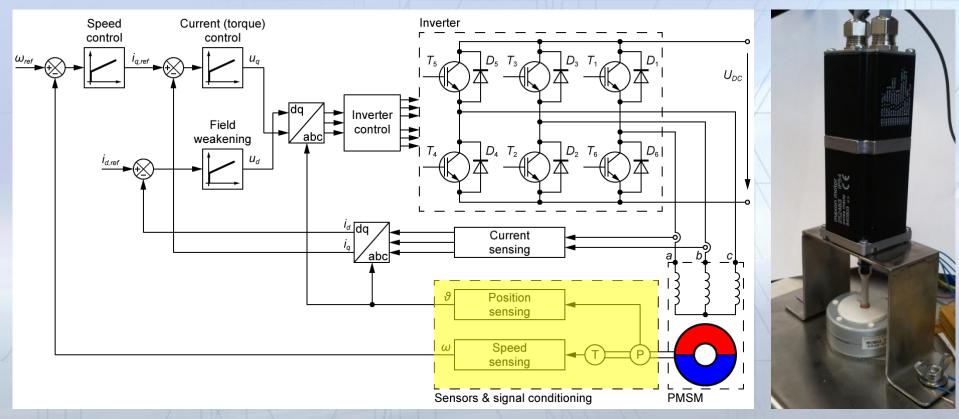
Tire pressure monitoring (deflation detection)


- Nearly 30% of traffic accidents caused by flat tires
 - Lower tire pressure increases fuel consumption and can lead to loss of traction
 - Tire pressure monitoring became mandatory equipment
- Indirect deflation detection


Hardware-In-the-Loop simulator

Sensorless control of PM synchronous motors

- Slotless PMSM aircore winding
- Magnetic anisotropies caused by rotor magnets



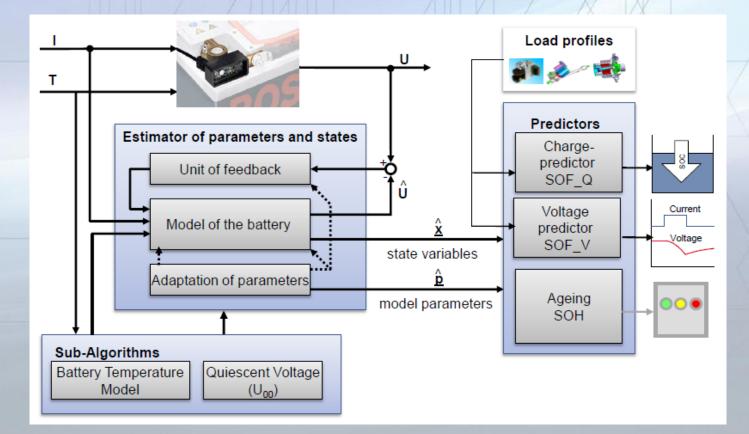
driven by precision

Sensorless PMSM drive

- Replace position and speed sensors with a "software sensor"
- In cooperation with Maxon Motors

maxon motor

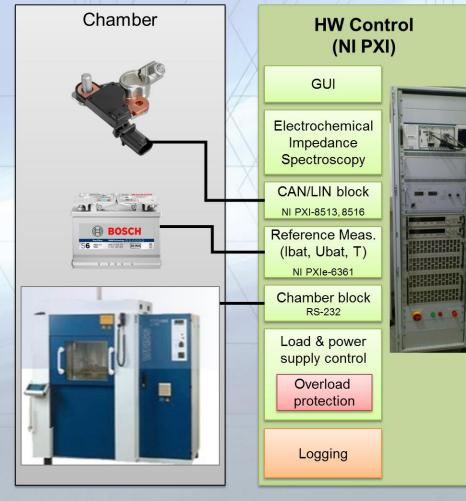
driven by precision



Bosch-University cooperation

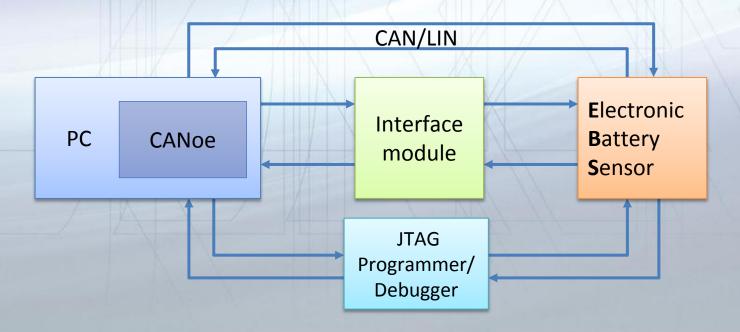
- Battery Sensor Testbench
- Electronic Battery Sensor Tests

BOSCH

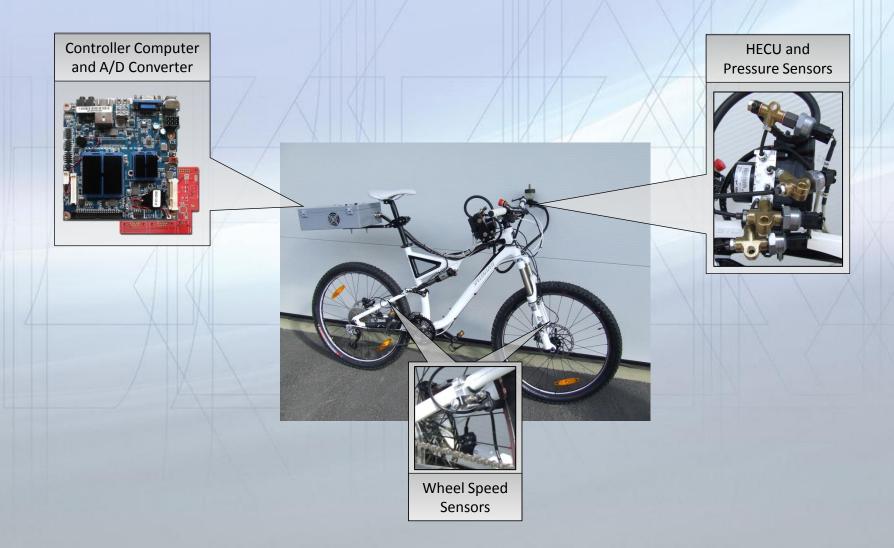


Battery Sensor Testbench Development

- Automated testing of batteries and Electronic Battery Sensors
- Precision battery measurement
- Sensor testing:
 - Automated flashing
 - Voltage, current & temperature setting with programmable load
 - Automatic test execution (NI TestStand integration)
- Security module
 - Overload protection
 - Overheat protection
 - Explosion protection



Battery Sensor Software Integration Test


- Automated software integration testing of EBS
 - Test environment construction
 - Specification and implementation of integration tests
 - Switch to new development environment and compiler

Bicycle ABS prototype development

Known Issues in R&D (Cooperations)

- Interdisciplinary aspect of automotive research
- Universities can contribute with strong theoretical background
- Problems to be solved
 - Small sites, big projects, distribution of tasks
 - Attraction of young engineers
 - Migration
 - Cultural diversity (enterprise, university)
- Sustainable R&D

Solutions by TÁMOP

- Identify knowledge potential and infrastructure
- Form networks of research sites
- Reach the critical mass for handling effort-intensive industrial challenges
- Harmonization of bachelor, master and doctoral educational system
- Cooperation in recruitments of young people

Conclusions

 In the 20th century the scientific problems were generated by scientists, our believe is that in the 21st century the scientific problems will be generated by customers

University challenge:

 Provide a problem-rich environment, where the individuals decide on which topic they would like to work

• Goal:

• Establish such an R&D atmosphere where industrial research takes place in a university environment and the topics present industrial interests.

CONFERENCE ABOUT THE STATUS AND FUTURE OF THE EDUCATIONAL AND RESEARCH - DEVELOPMENT SERVICES FOR THE VEHICLE INDUSTRY

THANK YOU FOR YOUR ATTENTION.

Dr. Dénes Fodor and Dr. László Czúni University of Pannonia

<u>Contact</u>

Email: fodor@almos.uni-pannon.hu Tel.: +36-88/624-777

Web: www.uni-pannon.hu

CONFERENCE ABOUT THE STATUS AND FUTURE OF THE EDUCATIONAL AND R&D SERVICES FOR THE VEHICLE INDUSTRY

COOPERATION BETWEEN HIGHER EDUCATION, RESEARCH INSTITUTES AND AUTOMOTIVE INDUSTRY TÁMOP-4.1.1.C-12/1/KONV-2012-0002

BASIC RESEARCH FOR THE DEVELOPMENT OF HYBRID AND ELECTRIC VEHICLES TÁMOP-4.2.2.A-11/1/KONV-2012-0012

"SMARTER TRANSPORT" - IT FOR CO-OPERATIVE TRANSPORT SYSTEM TÁMOP-4.2.2.C-11/1/KONV-2012-0012

> Nemzeti Fejlesztési Ügynökség www.ujszechenyiterv.gov.hu 06 40 638 638

HUNGARY'S RENEWAL

The projects are supported by the European Union and co-financed by the European Social Fund.

Hungarian Academy of Science Budapest, 31 January 2014

