Supply industry: opportunities and requirements

Magyar Tudományos Akadémia István Lepsényi

31. January 2014.

Middle EU car industry

Location of car factories in the new EU countries 2012

		-	-		TOTAL
\bigcirc	AUSTRIA	123,602		19,060	142,662
0	BELGIUM	507,204		33,890	541,094
	CZECH REPUBLIC	1,171,774		568	1,172,342
\bigcirc	FINLAND	2,900			2,900
0	FRANCE ²	1,682,814	284,951	n.a.	1,967,765
\bullet	GERMANY ²	5,388,456	260,813	n.a.	5,649,269
\bigcirc	HUNGARY	215,440		2,400	217,840
0	ITALY	396,817	241,186	33,411	671,414
	NETHERLANDS	28,000		21,800	49,800
$\overline{}$	POLAND	540,000	103,923	764	644,687
0	PORTUGAL	115,735	43,831	3,990	163,556
•	ROMANIA	326,556	11,187	22	337,765
٧	SLOVAKIA	900,000			900,000
	SLOVENIA	126,836	4,113		130,949
\circ	SPAIN	1,539,680	392,624	46,875	1,979,179
()	SWEDEN 2	162,814		n.a.	162,814
-	UNITED KINGDOM	1,464,906	94,045	16,289	1,575,240
	FILL	14 611 284	1 435 990	186.204	16 233 478
100	LV	14,011,204	1,100,000	100,204	10,203,470

Source: ACEA Pocket Guide, 2013

Restructuring of the Hungarian car industry

1983

Basically vehicle orientation Both the main unit and the vehicle The car industry is 18% of the industrial production, 10% of the export

2013

OE – basically car

 Audi, Suzuki, Mercedes, Opel

Main unit – significant commercial vehicle deliveries

 Bosch, Continental, Lear, Luk, Delphi, DENSO Valeo BPW, ZF etc

Hungarian car industry

Car industry 2012

- Sales in the automotive industry: 15 437,7 mill EUR
- Number of observed organizations : 306
- Share of car industry from the industrial production: **19,3 %**
- Share of car industry from the domestic sales : 2,5 %
- Share of car industry from the export: 26,8 %
- Number of the employees ~ 72 415 (over 50 persons enterprises: 69,9 thousand persons)
- Share of the foreign interests enterprises from the foreign capital in the car industry, 2011: 4,4%

*Source: KSH 23 Szept. 2013

Regions of the Hungarian car industry

Location of the biggest automative industry suppliers in Hungary

Source: NIH, 2012

TOPLIST of the automative industry companies 2012

Hierar	Name of the companies	Net income (mill
chy		HUF)
1	AUDI HUNGARIA MOTOR Kft.	1 612 480
2	Bosch csoport*	580 681
3	Magyar Suzuki Zrt.	409 150
4	Mercedes-Benz Manufacturing Hungary Kft.	267 919
5	Continental Automotive Hungary Kft.	202 494
6	Lear Corporation Hungary Autóipari Gyártó Kft.	156 260
7	LuK Savaria Kuplunggyártó Kft.	141 370
8	Delphi Hungary Autóalkatrész Gyártó Kft.	125 484
9	DENSO Gyártó Magyarország Kft.	118 429
10	BorgWarner Turbo Systems Alkatrészgyártó Kft.	104 766
11	SMR Automotive Mirror Technology Hungary Bt.	80 816
12	HAMMERSTEIN Autórészegységgyártó és Fejlesztő Bt.	75 624
13	Valeo Auto-Electric Magyarország Gépjárműalkatrész-gyártó Kft.	67 790
14	Visteon Hungary Termelő és Értékesítő Kft.	66 000
15	BPW-Hungária Kft.	56 606
16	ZF Hungária Ipari és Kereskedelmi Kft.	55 428
17	Dana Hungary Gyártó Kft.	53 424
18	KNORR-BREMSE Vasúti Jármű Rendszerek Hungária Kft.	47 806
19	RÁBA Járműipari Holding Nyrt.*	42 346
20	Linamar Hungary Autóipari és Gépgyártó Zrt.	40 486

Situation of Hungarian car industry in Central Europe

Car industry:

- 1. place: Czech car ind.(Skoda)
- 2. place: Slovakian car ind. (Volkswagen)
- 3. place: Hungarian car ind.
- 4. place: Romanian car ind.

The companies with the highest turnover in car industry in the region in 2011-12. data in mill EUR

Why is R&D important ?

R&D hierarchy in the industry sector and in the main regions of the world

R&D investment 2012 (in EUR)

Source: European commission The 2012 EU Industrial R&D Investment SCOREBOARD 2013

Hungary improved one place over last year

Summary Innovation Index

Source: Innovation Union Scoreboard 2013

Yearly R&D financial expenses among the newly joined countries to EU

The yearly R&D financial expenses per capita is 120,6 EUR in Hungary, which is the quarter of the EU average, but exceed the average of countries newly joining to EU.

The R&D finance expense of companies in some sector (billion EUR)

Source: KSH 2013

Does innovation depend on the measurement?

Rate of innovative companies in Hungary and in the EU by size-category

- The larger the company is the bigger chance is for innovation.
- Quarter of small companies, almost half of the medium companies are innovative.
- However seven of the ten big companies carry out innovative activities.

Hungary

AIPA regional activity as a benchmark

Average of EU

Az adatok 2010-re vonatkoznak. Forrás: Eurostat, CIS, 2012.

Accepted to higher education number (person) + their distribution in different areas 2011-13.

Training area	2011 (per.)	2011 (%)	2012 (per.)	2012 (%)	2013 (per.)	2013 (%)
Agricultural	3626	4	3392	5	4439	6
Master of arts	9655	11	8509	11	6758	9
Economy	16361	19	12567	17	14313	20
Information technology	6170	7	5297	7	5022	7
Law	7117	8	3257	4	3067	4
Civil service, law enforcement, military	581	1	2654	4	2560	4
Technical	13914	16	13077	18	11697	16
Art	1286	1	1506	2	1506	2
Art mediation	539	1	540	1	518	1
Science of medicine and health	5491	6	5387	7	5197	7
Pedagogy	7966	9	6470	9	7832	11
Science of sport	1581	2	1632	2	1856	3
Social science	7118	8	5417	7	4140	6
Natural science	5740	7	4839	6	3766	5

Basic principles of division of work between companies and universities

Factual knowledge University: theory Company: practice

Methodology skills University: research, calculus Company: project work

Qualification provided by dual (practice-oriented) training

Social skills University: presentation techniques Company: negotiation skills

Practice-oriented - dual training in higher education Career orientation navigated by Kecskemét College, Faculty of Mechanical Engineering and Automation (KF GAMF) and Knorr-Bremse

Establishment of long-term linkage to the company and its products;

Security of technical life path and career model planning;

Varied and intensive practice-oriented curriculum – professional skills based on solid theory skills, to be utilized in practice as well – during the 7-semester training course, 10-12 weeks of theory lessons are followed by 5-8 weeks of practice at the company each semester;

After commencing their college studies, students enter into a student relationship with the company and are granted pecuniary allowance on a monthly basis;

Integration of skills and capabilites required by industrial corporation into engineering training

- cooperation through teamwork
- communication and presentation skills
- ownership approach
- creativity and innovation

Selection of applicants for practice-oriented tertiary training at Knorr-Bremse

DUÁLIS KÉPZÉS

duális képzés

munkavállalóknak

személyes oldalak

kapesolat

E-mail cime:

Jelszava:

személyes oldalak

A Kesskenét Főiskola GAMF Kara – együttműködve a Knorr-Brenne Felcendszerek Kit-vel és egyeb intézményi partnerekkel – a hazai viszonyokhoz illeszkedő dvális rendszerű képzést dolgozotti ("melynek célja, hogy maximálisan megfeleljen a járműpar elvárásainak. Az országosan is újszerű képzésben a halljatók elmélet tudésukat az iparvállatonál tötött gyakontai tösztek során "élesben" bővihetik, eszítat tapasztalatos zerenzek lendő szálvmájubban. A kialákötte képzési rendszerben olyan versenyképes muniavállaló kerül ki az oktacásódi, aki azonnal – több hönapos vagy akár többéves továbóképzés és további anyagi ráfortítás relikúl is –, képze belépni a munka világába.

Hogyan néz ki a duális képzés a gyakorlatban?

A duális kepzésben minden okatasis félév az elméleti résszel kezdődik. 10-12 hetet fogsz etőlteni a Kecskemét Főiskola GANF Karán, ahol a Főiskola okatól minden, a mendio minskáloz szüksépes elméleti tudniválóval megismentetnek. A következő 3-6 hetben alápvetően a Knorr-Bremse munkátársal mutatják meg Neked, hogy az egyes tartáfryak elsapátott elméleti hogyan alánimsze a vallási az gyakcintában a Avsignálószakban a Főiskolával közösen fogjuk felmétmi, mennyire sikenüt megtanulnod a szükséges elméleti és gyakcintai ismeneteket. A tavaszi félév a visgalászakial azoban emel ér véget a Eskindora: június végén és júliusban projekt-feladatokon keresztúl, az elméleti ismereteidre támaszkodva a Knorr-Bremse tevékenyságevel, úzleti folyamataival fogsz megismerkedni és érdekes próblemákion fögunk egyitt dögzmi.

Mit fogsz nálunk tanulni?

A duális képzésben, a vállalatunkinál elbított idő alatt bemutatjuk Neked termékeinket, a fékzendszerbeli komponensek fejlesztését és gyártásuk folyamatát, az alkalmazott technolópiáka. műsségbítottásári endszerenket és még sok műnem más hazsnos dölgot. A fentbeket azonban nem egyszerűen elmondyuk tekked, hanem azokat gyakorlód, kipróbalód, részt veszel benrúk. Ha valamelyik területen szeretneli jobban elmélyülni – példaul gy TDKminik keretében unav mait csircönlonztéket – a körre ahbor te minden striksenne.

Number of applicants at the career portal of the company (www.joinus.hu)

- 91 in 2012
- 100 in 2013

Components of selection procedure:

capability test, psychology test, stereopsis and drawing skills survey, assessment centre practice,

personal interview and foreign language placement test

In 2012, 26 applicants were invited to the selection day and 14 students qualified

In 2013, 24 of the applicants to the BSc courses of vehicle engineering and technical management were invited and 8 of them qualified

Model curriculum of dual BSc course of vehicle engineering – Semester 1

Knorr-Bremse - Basics

Standard presentation by CEO István Lepsényi

	Knorr-Bremse - Corporate basics - practice -			
ŧ	Voca	Porsonal		
	Theory	Practice / manual skills	competence	
	Supervisor: István Lepsényi			
ényi	Introduction to Knorr- Bremse			
	Supervisor: Kornél K	ántor, Sándor Szőke		
	Introduction to Knorr-E Kft.'s products and R&			
Supervisor: Tamás Kádár, István Kalocsa, Production practice János Tóth				
	Production technology practice: putting sample compo them. Mounting basics			
			Teamwork.	

Knorr-Bremse Group

Assessment by students of company practice at dual BSc Summary of opinions by 14 students:

course of vehicle engineering*

To what extent do you think the professional content of the course is of adequate standards? Sem.1, average: 1.28 Sem.2, average: 1.28 Sem 3 average: 1.5

To what extent do you think practice training was understandable? Sem.1, average: 1.07 Sem.2, average: 1.5

Sem.3, average: 1.9

*The practice course in Semester 3 finishes on 13 February 2014; the survey was conducted after 50% of practice classes were completed (Number 1 is the best in the assessment) What is your rating of instructors' preparedness? Sem.1, average: 1.21 Sem.2, average: 1.21

Sem.3, average: 1.28

To what extent can you apply what you heard at the course

in your future studies? Sem.1, average: 1.64 Sem.2, average: 1.79

Sem.3, average: 1.5

Expenses by company involved in dual higher education

Education

Involvement of company experts, preparations for training, practice training material development

Student allowances

Students' pay, catering, working clothes, other

COMPANY RESOURCES ALLOTTED TO DUAL EDUCATION

Infrastructure

Training locations (classrooms, premises for practice), materials and tools used in training

HR

Selection of dual students, training arrangements, communication with students and the higher education institution, regular evaluation of dual students

Result

Professional replacement	 Applicants with competencies required by the labour market are available in the long run. The number of career starters graduated from technical training and employed in the industry is increasing. Labour market supply and demand of future engineers is supported at national level.
Cooperation	 Dual higher education courses are based on the concerted close cooperation of higher education institutions and the industrial companies concerned. Young engineers are trained to have quality practical experience and skills.
Extension of dual higher education	 Nationwide extension: involvement of SMEs in dual higher education, fostering their integration by infrastructure development at large corporations and higher education institutions. Integration of further higher education specialties and special fields into the training.
Sustainability criteria	 Handlig the model of dual higher education as a high priority in higher education development. Availability of funding by tenders to develop and provide, in the long run, company and higher education resources as required for dual higher education.

Suggestion how to develop the higher education

Extension of Dual Higher Education

Harmonization of form and content of practical education

- Providing conditions for practical education
- Reception of guest speakers from the industry at the university; strengthening "interoperability" in general
- Theses and studies based on industrial needs

Natural science already at primary school; strengthening secondary education

Google – Continental – Step to future

Main features:

- Development of driverless car technology. Google project headed by: Sebastian Thrun, an engineer at Google.
- DARPA Grand Challenge first prize (2005)
- Nevada allowing driverless cars in public road traffic (29.06.2011.), followed by further states (California, Florida Sep 2012)
- Announcement by development team: about a dozen of their autonomous cars run more than 500,000 km (August 2012)
- Google and Continental announce a partnership to further development of robot car tech (Frankfurt Motor Show 2013. 09.12)
- Self-driving cars could be a reality by 2025 Continental estimated.

Development focus:

- Sensors
- Radars
- Cameras
- GPS
- Pattern recognition

Development in Hungary:

- Bosch, Knorr-Bremse, Continental, Takata etc.
- Universities and Academic Research Center

 The weight of R&D is growing perceptibly, primarily at large corporations, but in SME areas too

 Continuously increasing tendency in education to ensure an appropriate supply of professionals

Challenging tasks in Hungary too

Thank you for your attention!

Knorr-Bremse Fékrendszerek Kft Lepsényi István Szegedi út 49. H-6000 Kecskemét, Hungary Phone: +36 76 511 101 Fax: +36 76 481 363 Email: <u>istvan.lepsenyi@knorr-bremse.com</u> www.knorr-bremse.com

